If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4+b^2=16
We move all terms to the left:
4+b^2-(16)=0
We add all the numbers together, and all the variables
b^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| -8k−10=-7k | | 5x-23=x+13 | | -10+6s=s | | -k/3+6=-9 | | 5w-10=5 | | 5x+16-6x-7=180 | | 8+6d=5d | | 7w=8w+10 | | 1/3m+2=1 | | -4b-41=-29 | | 8s+8=64 | | -3-6y=4 | | 8-a/2=3(4-5a) | | 4x-9+3x+29=180 | | 3w=16+w | | 13x+35=360 | | 1.5x-5+1.5x-5=5x-20 | | 1+2+3=5x | | 2.85(×-18.20)=x+12.89 | | 52=-7w–4 | | x+3+x+3=4x+2 | | 7t=3t | | 1/4y-4=-7 | | 3/4+2/3x=-4x-221/4 | | -2=-u/6 | | 9y=12+3y | | -2(9x+5)-3x+4x=408+x | | -2=-u6 | | -30=5(5+q) | | 4x°+5x°=180° | | 15v=8v+63 | | 6y+5=-13 |